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Abstract
Magnetic diffuse scattering of neutrons was studied for a simple cubic antiferromagnet
L12-type Pt3Fe alloy in a paramagnetic phase. In order to visualize the physics, the data were
analyzed using a localized spin model and effective exchange coupling parameters were
determined. The result shows a special feature of exchange couplings; the first neighbor
coupling constant J1 has almost the same value and the same sign as that of the second neighbor
J2. This fact explains well coexistence of the (1/2 1/2 0)-type and (1/2 0 0)-type magnetic
structures in the low temperature phase of Pt3Fe alloy.

1. Introduction

Fcc Pt100−X FeX (X > 1) alloys show a rich variety
of magnetism with changes of Fe concentrations and
their atomic configurations. Disordered alloys always
show ferromagnetic long range order although a weak
antiferromagnetic component coexists [1]. Among these
alloys, the magnetism of ordered Pt75Fe25 alloy is very
interesting. A pure antiferromagnetic long range order
develops. The ordered Pt75Fe25 alloy has an L12-type structure,
in which the corner sites are occupied by Fe atoms and the
face center sites by Pt atoms, respectively. (Hereafter we
refer an atomic ordered state of Pt75Fe25 alloy as Pt3Fe.)
Bacon and Crangle [2] studied the magnetism of Pt–Fe
alloys with relevant Fe concentration range using powder
and single crystal specimens by neutron diffraction. For a
Pt2.93Fe1.07 alloy (ordered Fe73.3Fe26.7 alloy) which showed
antiferromagnetic long range order below TN = 160 K, they
found an abrupt change of the antiferromagnetic (1/2 1/2 0)

peak intensity around TS = 110 K. Below TS , a new peak
appears at the (1/2 0 0) reciprocal lattice point (RLP) with
the decrease of the (1/2 1/2 0) peak intensity. They proposed
a spin structure model for Pt3Fe alloy as shown in figure 1.
Since Pt atoms carry no magnetic moments, Pt3Fe alloy is
considered to be a simple cubic antiferromagnet. In the
L12-type structure, excess or mis-sitting Fe atoms occupy at
the face center positions. The nearest neighbor Fe moments
in the face centered plane couple ferromagnetically and the
second neighbor Fe moments antiparallel. Thus, the Bacon’s
model assumes existence of mis-sitting Fe atoms to explain
the (1/2 0 0)-type structure in the low temperature phase

(1/2 1/2 0)-type (1/2 0 0)-type

Figure 1. The (1/2 1/2 0)-type and (1/2 0 0)-type magnetic
structures reported by Bacon and Crangle [2].

of the stoichiometric Pt3Fe alloy and is an inhomogeneous
model with a mixture of the (1/2 1/2 0)-type and the
(1/2 0 0)-type structures. Kohgi and Ishikawa [3] have
studied magnon dispersion relations for a Pt3.10Fe0.90 single
crystal which showed a weak (1/2 0 0) magnetic Bragg
peak in addition to the ordinary (1/2 1/2 0) magnetic peak
at the lowest temperature. The data were analyzed under
the localized Heisenberg spin model and effective exchange
coupling constants were determined.

On the other hand, Vinokurova et al [4] studied the
magnetism of Pt3−X Fe1+X (X = 0.12 and 0.28) using neutron
diffraction. From the analogy of their results, they suggested
a uniform model which comes from the degeneracy of two
magnetic structures at the low temperature phase of Pt3Fe
alloy. Furthermore, Kulikov et al [5] calculated the band
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Figure 2. Non-collinear spin structure with both components of the (1/2 1/2 0)-type and (1/2 0 0)-type magnetic structures.

structure of paramagnetic Pt3Fe alloy and pointed out the
possibility of the nesting feature of electron and hole Fermi
surfaces to explain the antiferromagnetism of Pt3Fe ordered
alloy. Unfortunately, however, experimental evidence to verify
the degenerate spin-density-wave (SDW) formation had not
been reported in the system. Recently, one of the present
author and colleague [6] studied the magnetic structure of
Pt3Fe ordered alloy using a single domain single crystal under
a uniaxial stress and demonstrated the validity of the uniform
model with a non-collinear magnetic structure for the low
temperature phase of Pt3Fe alloy. The resultant structure is
shown in figure 2. They pointed out that the magnetic phase
transition at TS in the Pt3Fe alloy is one of crossover points of
the antiferromagnetic spin correlations in the Pt–Fe system [7].

Among the simple cubic antiferromagnetic structures,
ferro- and antiferromagnetic first neighbor spin couplings
coexist in both the (1/2 1/2 0)-type and (1/2 0 0)-type
structures, suggesting existence of spin frustration. In the
present measurements, magnetic diffuse scattering of neutrons
was studied in the paramagnetic phase using a single crystal
specimen of Pt3Fe alloy to investigate the frustrating spin
correlations in the simple cubic antiferromagnet. For the
magnetism of metallic system such as the Pt3Fe, the itinerant
electron treatment would be better, but the experimental data
were analyzed using a localized spin model to understand the
physics visually and to compare the results with the values
reported by the previous authors [3].

2. Sample preparation and experiment

Single crystal of Pt75Fe25 was grown by Bridgman method in
a furnace with a carbon electrode under an Ar-gas atmosphere.
This specimen has a volume of about 2 cm3. The cooling
speed of the furnace was about 200 ◦C min−1 around 1000 ◦C.
The furnace cooled sample already shows rather good L12-type
chemical order. However, to improve the atomic long range
order the single crystal was annealed at 1000 ◦C for 10 days in
Ar(+5%H2)-gas atmosphere and slowly cooled down to room
temperature.

Neutron scattering measurements were performed at the
T1-1 triple axis spectrometer installed in a thermal guide
of JRR-3M, Tokai, Japan. The incident neutron energy
of 13.5 meV was used for all of the measurements. The
λ/2 component of the incident neutron was eliminated using
pyrolytic graphite filter. Temperature of the specimens was
controlled in a refrigerator unit operated by the Solvay cycle.
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Figure 3. Temperature variations of the magnetic Bragg peak
intensities at (1/2 1/2 0) and (1/2 0 0).

3. Experimental data

The temperature variations of the (1/2 1/2 0) and (1/2 0 0)

magnetic Bragg peak intensities for our sample are given in
figure 3. Our Pt3Fe single crystal showed a Néel temperature
TN = 180 K. To study the spin correlations of the simple cubic
antiferromagnet, we carried out the neutron diffuse scattering
experiments in the paramagnetic phase at 200 K (=1.11TN).
Thus, it is not necessary to consider anisotropy of the scattering
intensities due to the magnetic domain distribution. In figure 4,
the total scattering intensity contour maps on the (0 0 1)
and (1 1̄ 0) scattering planes are shown. These maps
were drawn using 1740 and 1428 measuring points in total
respectively and scattered neutrons were accumulated for 30 s
at each point. In this measurement, the analyzer crystal
was removed to obtain the data of all scattering processes
integrated over energies. In these figures, solid lines indicate
the reciprocal lattice frame of a simple cubic structure, and
broken lines show the middle of this reciprocal lattice. In the
(0 0 1) scattering plane, the magnetic Bragg peak positions
of the (1/2 1/2 0)-type and (1/2 0 0)-type structures exist,
while the (1 1̄ 0) scattering plane includes the Bragg peak
positions of three main structures (0 0 1/2)-, (1/2 1/2 0)-
and (1/2 1/2 1/2)-types of the simple cubic antiferromagnet.
Diffuse scattering intensity distributes around the (1/2 1/2 0)

and (1/2 0 0) RLPs, which correspond to the high temperature
magnetic phase and the component of the low temperature
phase, respectively, but no peak around the (1/2 1/2 1/2) RLP.
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Figure 4. Diffuse scattering intensity contour maps on the (0 0 1)
and (1 1̄ 0) scattering planes studied without analyzer crystal at
200 K (1.11 TN). (a) The (0 0 1) scattering plane and (b) the (1 1̄ 0)
scattering plane. A sharp peak at (0.41 0.41 0.41) would be due to
multiple scattering.

Furthermore, the diffuse scattering intensity extends along the
broken lines on the (0 0 1) scattering plane. Inelastic neutron
scattering measurements in the constant-E mode of operation at
�E = 5 meV were also studied using the analyzer crystal and
the intensity contour maps are given in figure 5. These maps
were drawn using 750 and 841 measuring points in the (0 0 1)
and (1 1̄ 0) scattering planes, respectively and each datum was
taken for 90 s. The results are very similar to those for the total
scattering intensities, suggesting that the spin correlations are
frequency independent.

These data indicate that the spin correlations of the
(1/2 1/2 0)-type and (1/2 0 0)-type coexist, however,
the simplest antiferromagnetic spin correlation with the
(1/2 1/2 1/2)-type does never exist in the paramagnetic phase
at T/TN = 1.11.

4. Data analysis

To understand these diffuse scattering patterns, we tried to
reproduce the intensity contour maps in the (0 0 1) and
(1 1̄ 0) scattering planes (figure 4) using a simple classical
Heisenberg model under the random-phase approximation

Figure 5. Inelastic diffuse scattering intensity contour maps on the
(0 0 1) and (1 1̄ 0) scattering planes studied at 200 K in the
constant-E mode of �E = 5 meV. (a) The (0 0 1) scattering plane
and (b) the (1 1̄ 0) scattering plane.

(RPA) treatment. Since the data for figure 4 were obtained
without using analyzer, scattering processes integrated over
all energies were included. Strictly saying, since the incident
neutron energy was rather low (E0 = 13.5 meV) and the
Q-space we have measured was limited to the regions with
rather small scattering vector, inelastic scattering with large
energy transfer was prohibited due to the energy–momentum
conservation law. However, contribution of high energy
transfer processes would be very low in the short measuring
time (30 s). Thus, we assume that the data including the
scattering processes integrated over all energies. Then, we can
consider here only the space correlations of spins.

Neutron scattering cross section above the phase transition
temperature associated with a spin fluctuation is represented
using a static susceptibility

I (k) ∝ χ(q).

The static susceptibility is given by the following equation
under the RPA

χ(q) ∝ 1

� − (J (q0) − J (q))

3
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Figure 6. Calculated diffuse scattering intensity contour maps on the
(0 0 1) and (1 1̄ 0) scattering planes using the parameters given in the
text. (a) The (0 0 1) scattering plane and (b) the (1 1̄ 0) scattering
plane.

where, � = kB(T − TN) represents the degree of the deviation
from Néel temperature. The wavevector q0 is the characteristic
wavevector when the system is in the ground state. J (q)

represents the Fourier transform of the interaction matrix. The
exchange interactions from the first to sixth neighbor atoms
were taken into consideration and described as from J1 to J6,
respectively.

Figure 6 shows the calculated intensity contour maps
in the (0 0 1) and (1 1̄ 0) scattering planes using the best
fitting values of Jn as the parameters. The calculated intensity
maps reproduce well the main features of the experimental
data such as the diffuse peak positions and extending
direction of diffuse scattering. Since we did not measure
the absolute value of the intensities, only the ratios of the
exchange parameters were determined. The ratios of the best
fitting parameters determined here were J1:J2:J3:J4:J5:J6 =
−1:−0.9:−0.27:0.1:−0.02:−0.03 (where Jn > 0 indicates
ferromagnetic coupling). In course of calculations, we found
that various attempts considering up to the 3rd neighbor
interaction J3 always failed to reproduce the observed intensity
maps, indicating that the fourth neighbor exchange interaction
J4 plays an important role to reproduce the experimental data.
On the other hand, J5 and J6 hardly contribute to reproduce the
experimental data.

Figure 7. Calculated diffuse scattering intensity contour maps on the
(0 0 1) scattering plane using the exchange coupling parameters
reported by Kohgi and Ishikawa [3].

Table 1. Comparison of the exchange fitting parameters up to sixth
neighbor atoms. Exchange parameters for Pt3.10Fe0.90 are normalized
to the value of J1 for comparison.

J1 J2 J3 J4 J5 J6

Pt3Fe (present data) −1 −0.9 −0.27 0.1 −0.02 −0.03
Pt3.10Fe0.90 [3] 1 −0.56 0.48 0.18 0.03 −0.12

Note that the dynamical susceptibility χ(q, ω) (h̄ω =
5 meV) also shows almost the similar spin correlations to the
static susceptibility χ(q).

5. Discussion

Kohgi and Ishikawa [3] determined the exchange coupling
constants using their experimental data of magnon dispersion
relations for Pt3.10Fe0.90 single crystal under the Heisenberg
localized spin model. In addition to the (1/2 1/2 0) Bragg
peak, their sample showed very weak (1/2 0 0) magnetic peak
(∼1% of (1/2 1/2 0)) at the lowest temperature (∼5 K) and
was slightly different from our stoichiometric alloy Pt3Fe, but
fundamental magnetic properties should be the same. Thus, it
would be meaningful to compare the results for both systems.
Exchange coupling parameters reported are compared with our
results in table 1. Exchange coupling parameters determined
here are completely different from those of the previous
authors. The differences are not only the absolute values but
even their signs. The reason of these differences could not be
ascribed to the small difference of the Fe concentration of the
alloys.

The present experimental data indicate that both the
(1/2 1/2 0)-type and (1/2 0 0)-type spin correlations
coexist even in the paramagnetic phase, suggesting that the
(1/2 1/2 0)-type spin structure and the (1/2 0 0)-type structure
degenerate energetically. In order to confirm this point, we
calculated magnetic energies for both structures. Under the
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localized spin model, the Hamiltonian is described as

H = −2
∑

〈i, j〉
Ji j Si S j − D

∑

i

S2
i z,

where Ji j is the effective exchange interactions between i th
and j th iron atoms and D is the phenomenological anisotropy
constant. Only the exchange interactions between iron atoms
were considered because platinum atoms have no magnetic
moment as previously mentioned. If we assume the two
magnetic states, the (1/2 1/2 0)-type and (1/2 0 0)-type
structures, are energetically degenerate, following equations
should be satisfied when we take the exchange coupling
constants up to the fourth order. This assumption would be
justified because the diffuse scattering patterns are insensitive
to the fifth and sixth neighbor interactions.

2J1 + 4J2 − 8J3 − 6J4 = −2J1 + 4J2 + 8J3 − 6J4.

Then, we obtain the simple equation:

J1 = 4J3.

Furthermore, the total magnetic energy should be negative.
Using above condition, we obtain

2J2 − 3J4 < 0.

Our exchange coupling constants determined here almost
satisfy these conditions, but those of Kohgi and Ishikawa
do not satisfy the first condition. In order to check this
point, we calculated the susceptibility χ(q) using the exchange
parameters reported by these authors and compared it with our
results. The calculated χ(q) for the (0 0 1) scattering plane is
given in figure 7. Their sample was non-stoichiometric and a
very weak (1/2 0 0) magnetic Bragg peak was observed at the
lowest temperature. The weak diffusive peak around the (1/2 0
0) RLP may be an indication of the appearance of the (1/2 0 0)-
type structure. However, the extending direction of diffuse
scattering is completely different from our experimental and
calculated data, for which diffuse scattering extends along the
direction from the (1/2 0 0) to (1/2 1/2 0) RLPs.

The exchange coupling constants determined here have a
special feature. The first neighbor coupling constant J1 has
almost the same value and the same sign as that of the second
neighbor J2 although the second neighbor distance is

√
2 times

larger than the first neighbor distance. That is to say, both
the first and second neighbor spins favor antiferromagnetic
coupling with the same strength. For the simple cubic lattice,
these interactions conflict each other. However, the number of
second neighbor atoms is more than that of the first neighbor
atoms, resulting that the structure with antiferromagnetic
coupling at the second neighbor spins, the (1/2 1/2 0)-type
and/or the (1/2 0 0)-type structure, is stabilized but never
stabilized the (1/2 1/2 1/2)-type structure because all of the
second neighbor spins couple ferromagnetically for the latter.
The (1/2 1/2 0)-type and (1/2 0 0)-type structures look like
a competing system of ferro- and antiferromagnetic couplings

if we consider the first neighbor spin coupling only, but this
is not true. The ferromagnetic coupling of the first neighbor
spins in the (1/2 1/2 0)-type and (1/2 0 0)-type structures
occurs as a result of conflicting spin couplings of the first
and second neighbor antiferromagnetic interactions. In this
sense, we can regard the Pt3Fe ordered alloy as a kind of
a frustrating system. This is consistent with the results of
our previous work [6] in which we reported that the TN of
the Pt3Fe alloy sensitively increased under the uniaxial stress
because the tetragonal lattice deformation suppresses the spin
frustrations. Note that the equal values of J1 and J2 are not the
necessary condition for the degeneracy of the (1/2 1/2 0)-type
and (1/2 0 0)-type structures. This feature rather seems to be
accidental for this system.

As shown in figures 4 and 5, the total diffuse scattering
and inelastic scattering intensities show broad peaks at the
same positions around the (1/2 0 0) and (1/2 1/2 0) RLPs,
indicating that the space correlations of spins are independent
to frequencies. That is to say, above the transition temperature,
spins are dynamically fluctuating with various frequencies as
clusters keeping with space correlations. This seems to be
a characteristic common to metallic frustrating spin systems
such as the geometrical frustration systems [8] and spin-glass
alloys [9].

Kulikov et al [5] reported in their band calculations
that the two different spin-density-waves (SDWs) with the
wavevector Q1 = (2π/a)(1/2 1/2 0) and Q2 =
(2π/a)(1/2 0 0) coexist for Pt3Fe ordered alloy and they
calculated the static susceptibility χ(q) along the major
crystallographic directions in the paramagnetic phase. The
susceptibility showed the maximum values at the M and X
points which correspond to the (1/2 0 0) and (1/2 1/2 0)

RLPs, respectively. The present experimental data are
consistent with these calculations. In our data analysis, we
used the localized spin model in order to visualize the physics
easily. However, the theoretical result derived by Kulikov et al
under the band calculation has just the same physical meanings
as that the first neighbor coupling constant J1 has almost the
same value and the same sign as that of the second neighbor J2

in the localized spin model.
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